First U.S. nuclear reactor built from scratch in decades enters commercial operation in Georgia::ATLANTA — A new reactor at a nuclear power plant in Georgia has entered commercial operation, becoming the first new American reactor built from scratch in decades.

    • nottheengineer@feddit.de
      link
      fedilink
      English
      arrow-up
      0
      arrow-down
      1
      ·
      edit-2
      11 months ago

      Nuclear is still fossil fuel, just not combustion. But I agree, this is good news because it helps reduce coal and gas usage.

      Edit: I get it, I’m wrong. No need to repeat the same comments over and over.

    • Yendor@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      16
      arrow-down
      72
      ·
      11 months ago

      The reduced operating emissions take 10+ years to outweigh the enormous construction emissions of nuclear. (Compared to gas.)

        • schroedingershat@lemmy.world
          link
          fedilink
          English
          arrow-up
          6
          arrow-down
          6
          ·
          11 months ago

          Mean and median lifetime of a nuclear reactor is well under 30 years. Closer to 20 if you count all the ones that produced for 0 years.

        • Yendor@sh.itjust.works
          link
          fedilink
          English
          arrow-up
          24
          arrow-down
          28
          ·
          11 months ago

          Sure. But do you think Nuclear reactors will still be cheaper than renewables + storage in the 2070s? Nuclear is far more expensive per kWh than renewables, and the cost of storage is falling fast.

          • cryball@sopuli.xyz
            link
            fedilink
            English
            arrow-up
            26
            arrow-down
            1
            ·
            edit-2
            11 months ago

            Good question, that one can only speculate on. IMO it’s a two part question.

            First is that newly built nuclear plants are expensive. So the question depends on if we bite the bullet (build the reactor) today or in 2070. One built today will produce cheap power in 50 years.

            For example in Finland we have reactors from 1980, that make up the backbone of stable energy production in our country. Those are going to be kept online till the 2050s. I’d argue at that point the cost per kwh will be mostly dependent on maintenance and fuel, so relatively small.

            Wind and solar cannot reap the same benefits if you have to replace the plant every 20 years.

            Storage is a completely separate question that is not taken into account when new wind farms and such are being built. If one was to account for storage today, the cost of renewables would be much closer to that of other means of production.

            Also in the future, if storage costs keep falling due to billions of R&D money, similar effects could be achieved in nuclear via serial production and scale.

            EDIT: Just read you have studied this stuff for real. Then ignore most of what I said, as you might know better :D

            • ephemeral_gibbon@aussie.zone
              link
              fedilink
              English
              arrow-up
              6
              ·
              11 months ago

              The cost of the power it generates in 50 years aren’t lower than the day it opens. If you amortise the cost of the plant over its life nuclear is stupid expensive per watt produced. It’s expensive enough that renewables + storage is cheaper. Renewables + storage is also a lot quicker to build than nuclear.

              Even after the uptick in cost of renewables in the last year (which was dramatic) they’re still the cheapest new build power (even accounting for the integration costs). As an example here’s the most recent annual csiro report on energy costs by type. It doesn’t include full scale nuclear today because it’s known to be unviable, but even 2030 projections on “if smrs are commonly deployed at scale” they’re predicted to be a lot more expensive than renewables with integration costs.

              https://www.csiro.au/en/research/technology-space/energy/energy-data-modelling/gencost

            • schroedingershat@lemmy.world
              link
              fedilink
              English
              arrow-up
              1
              ·
              11 months ago

              You can’t amortise your capital if just the variable operating and maintenance is more than replacing the reactor with firmed renewables. This is not the case yet, but betting that renewables won’t halve in price one more time in 30 years is a pretty stupid bet.

          • FailBait@lemmy.world
            link
            fedilink
            English
            arrow-up
            3
            ·
            11 months ago

            I would say it’s not the BEST solution but in areas in the extreme north/south, where solar/hydro aren’t options (and I legit have no idea how well wind would do with freezing weather/snow etc) it would be better to have nuclear there than to try and transmit long distance to those areas. At least until we get some more breakthroughs in energy storage.

          • GBU_28@lemm.ee
            link
            fedilink
            English
            arrow-up
            3
            ·
            11 months ago

            It was started a decade ago and finished now, not in the 2070s

      • saltesc@lemmy.world
        link
        fedilink
        English
        arrow-up
        5
        arrow-down
        2
        ·
        11 months ago

        So you’re saying the construction effort requires at least a decade of nuclear powered energy to be achieved?

        That could be up to 3.652 TWh. That’s more than my entire nation consumes in three years and we’re one of the world’s biggest suppliers of natural resources, including nuclear.

        You’re mathing wrong.

    • EuphoricPenguin@normalcity.life
      link
      fedilink
      English
      arrow-up
      82
      arrow-down
      8
      ·
      11 months ago

      Unfortunately, there’s still that one guy in the comments trying to say that hypothetical, largely unproven solutions are better for baseload than something that’s worked for decades.

      • Wren@sopuli.xyz
        link
        fedilink
        English
        arrow-up
        46
        arrow-down
        3
        ·
        11 months ago

        That or the fear-mongering talking points. That’s what caused our local power plant to be decommissioned, and now those same people are complaining about how much their electrics cost now.

        • szczuroarturo@programming.dev
          link
          fedilink
          English
          arrow-up
          12
          arrow-down
          2
          ·
          11 months ago

          The old soviet legacy. And a bit of actual disasters and from the 2 significant ones (hiroshima and chernobyl) half are beacuse of the soviets.

            • joel_feila@lemmy.world
              link
              fedilink
              English
              arrow-up
              4
              arrow-down
              1
              ·
              11 months ago

              on a side notw how people have dies from fukushima in the years since and how many have died from coal? Also you can compare the number of long term health problems

              • cryball@sopuli.xyz
                link
                fedilink
                English
                arrow-up
                1
                ·
                11 months ago

                Doesn’t matter. Bad news at the time was enough to scare people for the next 30 years.

        • EuphoricPenguin@normalcity.life
          link
          fedilink
          English
          arrow-up
          9
          arrow-down
          2
          ·
          11 months ago

          Heck, even my college Sociology textbook from OpenStax basically has nuclear fear-mongering baked into one of the later sections.

      • DoomBot5@lemmy.world
        link
        fedilink
        English
        arrow-up
        6
        arrow-down
        1
        ·
        11 months ago

        I think you mean hypothetical technology that hasn’t been invented yet, but he expected will be in widespread use 50 years from now.

      • ephemeral_gibbon@aussie.zone
        link
        fedilink
        English
        arrow-up
        10
        arrow-down
        5
        ·
        11 months ago

        If you mean renewables by that, it’s hardly hypothetical or unproven. I’m in Australia and south Australia and Tasmania (two of our states) have fully renewable grids, Tasmania for the past 7 years. South Australia does still occasionally pull from an interconnect but most of the time they’re exporting a bunch of power.

        Renewables with storage are cheaper and faster to build than nuclear and that’s from real world costs. Nuclear would be fine if it wasn’t so stupidly expensive.

        • tempest@lemmy.ca
          link
          fedilink
          English
          arrow-up
          9
          arrow-down
          1
          ·
          11 months ago

          Tasmania

          Generates nearly all its power using hydro electric, which is great but pretty dependent on geography.

          South Australia

          Wiki says a pretty big hunk of that is still gas

          https://en.wikipedia.org/wiki/Energy_in_South_Australia#/media/File:Electricity_generation_SA_2015-2021.svg

          In Ontario Canada where I am from it would take > 4000 wind turbines all working at once (not including the batteries) to supplant our nuclear capacity. Even the largest battery storage are in the hundreds of mega watts and only for a few hours at the cost of about half a billion dollars.

          I think it is more productive to approach these technologies as complementary as any proper grid should have both for the near future if we want to reduce global warming.

          • ephemeral_gibbon@aussie.zone
            link
            fedilink
            English
            arrow-up
            1
            ·
            11 months ago

            Ah sorry, my mistake on that one. Despite how many wind turbines working at once it may take, the power from the is cheaper by a long shot than nuclear.

            The reason I don’t think nuclear is the main solution is just cost + build time. It’s horrendously expensive. Much more so than the cost of renewables with proper grid integration (transmission, storage etc.) that has been modelled.

            Maybe in a while the small nuclear reactors may come close, but currently the full sized reactors are too expensive and smr’s aren’t really a thing yet because of cost.

            If power prices can come down instead of go up it’s going to be a lot easier to convince everyone to transition away from fossil fuels, and from modelling that’s been done (e.g. by csiro) that can be the reality

          • ephemeral_gibbon@aussie.zone
            link
            fedilink
            English
            arrow-up
            2
            ·
            11 months ago

            Ah sorry, my mistake. I messed up there.

            The battery in SA is really just for grid stabilisation, not long term storage. Batteries are not really a good soln for longer duration storage. You need surprisingly little storage though when they’ve modelled fully renewable grids which is why the projected costs aren’t stupidly expensive.

            • ZodiacSF1969@lemmy.world
              link
              fedilink
              English
              arrow-up
              1
              ·
              11 months ago

              That’s interesting, I’m an EE but in industry atm. I’d like to look into that whole scenario one day and see how much storage we’d need to go fully renewable.

    • dangblingus@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      arrow-down
      9
      ·
      11 months ago

      The nuclear lobby is alive and well on social media. Never before has the internet apparently agreed on something so controversial with some of the most cookie cutter, copy and paste, AI generated comments on the subject I’ve ever seen.

      The talking points seem to gloss over the fact that nuclear storage always fails, meltdowns happen, and you still have to mine uranium out of the ground. It’s far from a clean source of energy.

      • AphoticDev@lemmy.dbzer0.com
        link
        fedilink
        English
        arrow-up
        8
        ·
        11 months ago

        That the “nuclear lobby” is paying people to post stuff on Lemmy, a social media platform that accounts for a small part of single percent of all social media users, is a hot take I haven’t heard yet. Congrats, you’ve definitely imagined a scenario that nobody else in history has ever thought of. A true original thought.

        Pity it’s an absolutely fucking brain dead take masquerading as something more than nonsensical blithering from a total nincompoop, but you should bask in this moment nonetheless.

      • Zetta@mander.xyz
        link
        fedilink
        English
        arrow-up
        7
        ·
        11 months ago

        Nuclear power is something we should be using if you support science. If you don’t support science well you have a lot of other problems. Nuclear and renewable energy both need massive investments at the same time to replace fossil fuels.

      • Anon819450514@lemmy.ca
        link
        fedilink
        English
        arrow-up
        4
        ·
        11 months ago

        It’s not the cleanest, but in term of CO2 and other toxics produced per Giga-Watts, it’s the best compromise.

        Fission is hopefully, coming in the next decades. Like the other guy said, anything but coal/petrol.

  • grue@lemmy.world
    link
    fedilink
    English
    arrow-up
    57
    arrow-down
    3
    ·
    edit-2
    11 months ago

    About damn time! As a Georgia Power ratepayer, I’ve only already been paying extra for it for what, around a decade now?

    • hamsterkill@lemmy.sdf.org
      link
      fedilink
      English
      arrow-up
      32
      arrow-down
      1
      ·
      11 months ago

      That’s the downside of nuclear. Cost and build time. Upside is it’s reliable and carbon-clean.

    • MacroCyclo@lemmy.ca
      link
      fedilink
      English
      arrow-up
      2
      arrow-down
      3
      ·
      11 months ago

      This encapsulates the public response to building nuclear. I guess that is why it is the first in decades.

      • grue@lemmy.world
        link
        fedilink
        English
        arrow-up
        8
        ·
        edit-2
        11 months ago

        To be clear, my comment isn’t “the public response to building nuclear;” it’s “the public response to corruptly financing nuclear on the backs of ratepayers while guaranteeing zero-risk profit for shareholders, despite incredible incompetence and cost overruns building the thing.”

        If you think that bullshit is inherent to building nuclear, I won’t dispute it, but I will say it makes you even more cynical than me!

        I would’ve had no problem with it at all if it weren’t a fucking scam to gouge me for somebody else’s profit.

  • Beaupedia@lemm.ee
    link
    fedilink
    English
    arrow-up
    46
    arrow-down
    4
    ·
    11 months ago

    I highly, highly recommend the Oliver Stone documentary Nuclear Now from earlier this year. Completely changed my perspective. I had no idea that the oil industry was behind so much of the fear mongering around nuclear.

    • CmdrShepard@lemmy.one
      link
      fedilink
      English
      arrow-up
      5
      arrow-down
      5
      ·
      11 months ago

      To be fair we have seen multiple disasters in the past including Chernobyl, Three Mile Island, and Fukushima, which have serious and long lasting effects. I’m not against nuclear power but we can’t pretend the downsides are just made up or blown out of proportion.

      • NuanceDemon@lemmy.world
        link
        fedilink
        English
        arrow-up
        4
        ·
        11 months ago

        They are sort of blown out of proportion when you take into account modern safety protocols.

        Chernobyl and three mile island were user error, fukushima was force majeure.

        Since then they’ve been piloted widely. France has about 50 reactors and a laundry list of smaller errors that we’ve since learned from.

      • Eheran@lemmy.world
        link
        fedilink
        English
        arrow-up
        3
        ·
        11 months ago

        Have you ever compared the impact of Fukushima compared to the tsunami that caused it?

        Other than that, even if we assume rectors keep being old tech from the 60s, never using newer generations of rectors that can be inherently safe: Who cares about a bit of contaminated area, very localized, every few dozen years, when the alternative is a global climate crisis?

        • CmdrShepard@lemmy.one
          link
          fedilink
          English
          arrow-up
          1
          ·
          11 months ago

          I’d agree if our only two options were nuclear or coal/oil plants but we have many options that don’t require everything be powered from centralized power plants.

          Who cares about a bit of contaminated area, very localized, every few dozen years, when the alternative is a global climate crisis?

          I’m sure all the people and companies that exist in these areas. Land is finite and hospitable land is even more finite. Destroying these areas for decades to come isn’t any more preferable that the occasional natural disaster rolling through over a few day period.

          As I said I’m not against nuclear power and I would love to see more advancements come to fruition, but it doesn’t need to be our main source of energy nor is it accurate to claim that the potential issues that come with it are solely overblown conspiracy theories pushed by oil/coal companies.

        • PersnickityPenguin@lemm.ee
          link
          fedilink
          English
          arrow-up
          1
          ·
          edit-2
          11 months ago

          More people died in the evacuation of Fukushima than died fighting the meltdown, which was arguably 1.

          1 confirmed from radiation (lung cancer, 4 years later),[3] and 2,202 from evacuation.[4]

          The tsunami killed over 15,000 people. Awful disaster.

          However, Japanese people are very anti-nuclear so their media made it seem that the impact was horrific when, aside from the exclusion zone, wasn’t all THAT bad. However, losing that land was a big hit to a small country.

    • vacuumflower@lemmy.sdf.org
      link
      fedilink
      English
      arrow-up
      4
      arrow-down
      4
      ·
      11 months ago

      I mean, it’s obvious.

      Also historically some of Soviet-friendly left would present “capitalist” nuclear energy as apocalyptic-level dangerous and related to nuclear weaponry etc (cause USSR was, after discovery of reserves, selling oil and gas just like Russia does now, actually that was the reason for Brezhnev’s time improvement in level of life and simultaneously rapid growth of corruption, also loss of hope of anything like the Thaw happening again).

      • Bartsbigbugbag@lemmy.world
        link
        fedilink
        English
        arrow-up
        3
        arrow-down
        2
        ·
        11 months ago

        Or, maybe people recognize that literally the majority of radioactive mining leaves irradiated lands that disproportionately effect minorities and oppressed communities. The Navajo are still suffering due to the mining of radioactives in their area. The same story is true for nearly every community near such facilities.

        • DaPorkchop_@lemmy.ml
          link
          fedilink
          English
          arrow-up
          3
          ·
          11 months ago

          while that is certainly an issue, i very much doubt that it is a primary reason (or even remotely a concern) for the average anti-nuclear layperson.

        • vacuumflower@lemmy.sdf.org
          link
          fedilink
          English
          arrow-up
          1
          arrow-down
          1
          ·
          11 months ago

          Ah, those activists wouldn’t talk about that mostly, they’d talk about boom and radioactive pollution in places their audience lived in.

          Leftists caring about minorities and oppressed communities anyplace far from themselves are a notable rarity.

          And since the replacements were coal, oil and gas, which are just as dirty, I’d say your argument isn’t worth shit.

          • Bartsbigbugbag@lemmy.world
            link
            fedilink
            English
            arrow-up
            1
            ·
            edit-2
            11 months ago

            That’s funny.

            So you’re willing to move within 1 mile of a uranium mine and live there and drink the well water from that property?

            Or are you just willing to sacrifice others for your luxurious lifestyle?

            There are alternatives other than continuing to expand our consumption of fossil or nuclear fuels. Hell, most of them don’t even require lifestyle changes from the majority of the population.

            • vacuumflower@lemmy.sdf.org
              link
              fedilink
              English
              arrow-up
              1
              arrow-down
              1
              ·
              11 months ago

              So you’re willing to move within 1 mile of a uranium mine and live there and drink the well water from that property?

              No, but it’s the same with gold mines, copper mines, coal, ohoho, oil, ahaha, etc. Scale matters, and in scale for the same amount of energy nuclear gives the least pollution.

              Also I invite you to live near a lithium mine.

              • Bartsbigbugbag@lemmy.world
                link
                fedilink
                English
                arrow-up
                1
                ·
                edit-2
                11 months ago

                Or check it, we don’t increase our consumption, so we don’t need more energy. We purposefully decrease it. We allocate resources by necessity.

                Widget factories don’t need to operate 24 hours a day, and their owners don’t need to make 500x their employees wages. Kill two birds with one stone, the widget factory is only allocated enough energy to run a few hours a day, and the wages from its executives (who have proven they don’t deserve it by the very lack of care towards sustainability they have presented) go to the workers to ensure they continue to make the same amount despite the decrease in work time.

                You do that with all of the industries in the world, and I guarantee we could cut emissions by 50% within a year. Obviously, global implementations are much more complicated than my comment would imply, but I think accepting an end to a system where the only limits placed upon industry is “how much money do you have?” Is necessary entirely to have even a fraction of a chance at beating climate change.

                Then, once we’ve stopped wasting massive amounts of energy on inherently useless endeavors, then we can start to talk about the pollution caused by nuclear, but until then, it’s just replacing one extractive industry with another. Whether or not in theory nuclear is less damaging environmentally, our current Money = Right system precludes the possibility of such sustainable practices being put into place. There is always another country that can be corrupted to allow destructive, cheap extraction processes, like what happens in Mail, Burkina Faso, and Niger as we speak.

  • Coreidan@lemmy.world
    link
    fedilink
    English
    arrow-up
    50
    arrow-down
    8
    ·
    11 months ago

    Whoa. Finally a state in the US that isn’t doing something completely ass backwards. We need more of this.

    • Stovetop@lemmy.world
      link
      fedilink
      English
      arrow-up
      29
      arrow-down
      5
      ·
      11 months ago

      It’s Georgia, though. This is a positive development but it barely begins to make up for how much other ass-backwards stuff there is.

      This is the state that elected Marjorie Taylor Greene, keep in mind.

      • jkure2@lemmy.world
        link
        fedilink
        English
        arrow-up
        19
        arrow-down
        1
        ·
        11 months ago

        A single congressional district within that state elected Marjorie Taylor Greene lol

        • Gork@lemm.ee
          link
          fedilink
          English
          arrow-up
          1
          ·
          11 months ago

          Hmm if we had a giant solar array in space that could continuously capture sunlight, we could connect it to the Jewish Space Laser™ and beam it down to Earth, hopefully to a collection panel and not to the California forests to cause wildfires.

      • jdsquared@lemmy.world
        link
        fedilink
        English
        arrow-up
        13
        ·
        11 months ago

        This is the state that brought you Biden in 2020. And two democratic senators. Granted there’s a lot of back ass districts here, but we’re working on it I promise.

      • AssPennies@lemmy.world
        link
        fedilink
        English
        arrow-up
        14
        arrow-down
        1
        ·
        11 months ago

        Hopefully Georgia steps up and sticks to their guns with prosecuting people who attempt to convince election officials “to find 11,780 votes”.

  • Altima NEO@lemmy.zip
    link
    fedilink
    English
    arrow-up
    37
    arrow-down
    2
    ·
    11 months ago

    Oh wow really? Hope it kicks off some good news for other plants in the future.

    • RvTV95XBeo@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      67
      arrow-down
      1
      ·
      11 months ago

      The good news - it’s online, generating clean power, and hopefully demonstrating the safety and benefits of modern nuclear plants.

      The bad news - it’s $17B over budget (+120%) and 7 years behind schedule (+100%). Those kind of overages aren’t super promising for investors, but perhaps there are enough lessons learned on this one that will help the next one sail a little smoother.

      Either way, good to see it can still be done in the US.

        • variaatio@sopuli.xyz
          link
          fedilink
          English
          arrow-up
          4
          ·
          edit-2
          11 months ago

          Those amounts there. For comparison for example another recent plant Olkiluoto 3 in Finland was 13 years late on a 5 year original construction timeline (18 years total construction time) and 10 8 billion euros over budget on original budget of 3 billion euros. (Final estimate it cost constructor 13-14 11 billion euros to build. Technically its fixed price contract so customer price is still 3 billion. However it did bankrupt the builder Areva and litigations are ongoing about, if the French can extract more money from he customer TVO)

          So doubling the price budget and doubling the build time is not at all unreasonable first estimate on the announced numbers of the builder and customers at start of project.

      • danc4498@lemmy.world
        link
        fedilink
        English
        arrow-up
        7
        arrow-down
        1
        ·
        11 months ago

        Also, according to the story, power costs will go up as a result of this reactor coming online.

        • RvTV95XBeo@sh.itjust.works
          link
          fedilink
          English
          arrow-up
          6
          arrow-down
          1
          ·
          11 months ago

          True, BUT the cost increase was relatively small (~$3.50/mo) - can’t speak for everyone as I know people’s budgets can be quite tight right now, but that’s a price I’d be willing to pay for more nuclear on my grid.

          • very smart Idiot@sh.itjust.works
            cake
            link
            fedilink
            English
            arrow-up
            1
            ·
            11 months ago

            Yes nuclear power plants are very expensive. But the energy density is phenomenal.

            Energetic armortisation is far quicker on a nuclear plant than on solar panels.

            And the argument of subsidies is usually a fake one, since governments also pour millions into renewable energies.

            Broken down to lifetime cost to the cost of comparable technologies, nuclear is still on the same level as solar and wind.

            Since I am from Germany, and German sources might not be ideal to share, let me explain it this way: People are not stupid. They will never choose the financially unwise option, if the other one would seriously be the better one.

            • Stoneykins [any]@mander.xyz
              link
              fedilink
              English
              arrow-up
              1
              ·
              11 months ago

              People do often act stupid, but you are seeing it from what I consider to be an incomplete perspective. Nuclear could be financially unwise overall, but someone would still get a payday. That 17B over budget wasn’t burned and unmade, it went into the pockets of the people organizing and building the power plant.

              All this to say, the huge majority of the people involved in making the power plant a reality weren’t motivated by the efficiency of the power production on a cost basis. Most of them were probably making more money while it was still being subsidized, planned, and built. And while I think subsidies are generally useful and good, they can be a vector of financial abuse when it comes to unprofitable industries.

              Lastly “lifetime cost” is a bit of a useless metric when the majority of that lifetime comes too late. No point to a power source that will cleanly produce power after it has meaningfully contributed to pushing us over the edge and past the breaking point for a climate that can support agriculture as we know it. There isn’t enough time or margin for error in emissions left available to build all the nuclear plants needed to meet energy demands.

            • 🦘min0nim🦘@aussie.zone
              link
              fedilink
              English
              arrow-up
              0
              ·
              edit-2
              11 months ago

              Can you find any recent analysis that supports your claim that nuclear costs are at the same level as solar?

              The only one I’ve seen suggest this was from a nuclear industry lobby group, and it inflated the costs or solar by insane amounts.

              In Australia this is a bit of a hot topic and all impartial estimates suggest that nuclear will not get close to renewables in any way, even taking into account storage and grid costs.

              In the 10 years since this single reactor was built, one of our states has transitioned to almost 100% renewables. Wholesale costs have plummeted, but renewable projects are still profitable in the market. I was involved in a reactor project in a western nation some time ago (it’s still being completed unsurprisingly), and the lock-in wholesale price to support that project was simply extortionate. Solar generation prices are a whole magnitude smaller.

  • doggle@lemmy.world
    link
    fedilink
    English
    arrow-up
    37
    arrow-down
    5
    ·
    11 months ago

    Oh, neat. My state did something not completely stupid. I’ve got some reservations about nuke power as opposed to renewable, but this is definitely better than continuing fossil fuels.

    • killa44@lemmy.world
      link
      fedilink
      English
      arrow-up
      24
      arrow-down
      1
      ·
      11 months ago

      Fission and fusion reactors are really more like in-between renewable and non-renewable. Sure, it relies on materials that are finite, but there is way, way more of that material available in comparison to how much we need.

      Making this distinction is necessary to un-spook people who have gone along with the panic induced by bad media and lazy engineering of the past.

      • rm_dash_r_star@lemm.ee
        link
        fedilink
        English
        arrow-up
        25
        ·
        edit-2
        11 months ago

        Fusion and fission are quite different. A practical fusion reactor does not exist. It’s outside our technological capability right now. Current fusion reactors are only experimental and can not maintain a reaction more than a small fraction of a second. The problem is plasma containment. If that can be solved, it would be possible to build a practical fusion reactor.

        The fuel for a working fusion reactor would likely be deuterium/tritium which is in effect unlimited since it can be extracted from seawater. Also the amount of fuel required is small because of the enormous amounts of energy produced in converting mass to energy. Fusion converts about 1% of mass to energy. Output would be that converted mass times the speed of light squared which is a very, very large number, in the neighborhood of consumed fuel mass times 1015.

        Fusion is far less toxic to to the environment. With deuterium/tritium fusion the waste product is helium. All of the particle radiation comes from neutrons which only require shielding. Once the kinetic energy of the particles is absorbed, it’s gone. There’s no fissile waste that lingers for some half life.

          • rm_dash_r_star@lemm.ee
            link
            fedilink
            English
            arrow-up
            11
            arrow-down
            1
            ·
            11 months ago

            Here’s something more interesting. A matter-antimatter reactor converts 100% of mass to energy so it’s a hundred times more efficient than fusion. In modern times antimatter has been produced at quantum levels in large accelerators such as the Hadrian collider. So it does in fact exist and can be produced.

            However a matter-antimatter reactor has some serious technical problems. For one it’s currently impossible to create antimatter in any practical quantity. Second if antimatter comes in contact with matter, instant boom. Like a sugar cube size of the stuff could level a large city. So containment would be an insurmountable problem.

            The interesting part is when you see an antimatter reactor in shows like Star Trek, it’s based on real science. Interestingly in 1968 when they wrote the original Star Trek, nobody knew antimatter was a physically real thing. That’s a case of sci-fi predicting science.

            • brianorca@lemmy.world
              link
              fedilink
              English
              arrow-up
              2
              ·
              edit-2
              11 months ago

              But antimatter needs energy to create, probably more energy than it can produce. Unless you can find some source of it in the environment. Fusion is much more likely to be feasible.

              Antimatter might make a good compact way to store energy for a starship, if it was created in a large fixed facility with access to huge power sources. But it’s not a way to generate energy by itself.

        • PersnickityPenguin@lemm.ee
          link
          fedilink
          English
          arrow-up
          1
          ·
          11 months ago

          Your info is a little out of date - some fusion experiments have been able to maintain fusion for almost a minute. However, your point still stands. We are decades away at a minimum untill a viable fusion reactor.

          My guess is that fusion will be too expensive for commercial use unless they can get a super compact stellarator design to produce huge amounts of energy, and make them cheap to build (HA!).

          Or we will see them in spaceships. :P

      • schroedingershat@lemmy.world
        link
        fedilink
        English
        arrow-up
        2
        ·
        edit-2
        11 months ago

        LWR fuel is incredibly limited without a massive fleet of breeders (and no breeder has ever run a full fuel cycle, nor has second generation MOX ever been used. First generation MOX is also incredibly polluting and expensive to produce).

        The industry is already on to tapping uranium ore sources that are less energy dense than coal, and this is to provide a few % of world energy for a handful of decades.

      • PersnickityPenguin@lemm.ee
        link
        fedilink
        English
        arrow-up
        1
        ·
        11 months ago

        We don’t even know if fusion will ever be functionally able to produce more energy than it consumes, and on top of that it will need to be less expensive than natural gas or solar in order to compete. Which it will never do. Do you have any idea how much ITER has cost?

        $22 billion, or $16 billion “over budget.” And this is a test reactor that will never produce commercial power. They still have 2 years of construction left so… it could hit $30 billion. At least at Vogtle they are getting two reactors.

        • killa44@lemmy.world
          link
          fedilink
          English
          arrow-up
          1
          ·
          11 months ago

          We can still categorize a concept, even if the technology doesn’t exist in a useful state yet.

      • raptir@lemm.ee
        link
        fedilink
        English
        arrow-up
        1
        ·
        11 months ago

        Sure, it relies on materials that are finite, but there is way, way more of that material available in comparison to how much we need.

        Not trying to be “difficult,” but isn’t that what people thought about coal/oil at first? I understand that the scale is different, but it still needs to be a stop gap as opposed to a long term plan.

        • Gork@lemm.ee
          link
          fedilink
          English
          arrow-up
          11
          arrow-down
          1
          ·
          11 months ago

          Spent Nuclear Fuel, unlike coal or oil, can be recycled to a certain extent (this is done in places like France but not the US). If we recycled all of the spent fuel, we’d potentially have a thousand years (give or take) of fissionable fuel. Plenty of time for us to get fusion running so we can completely wean ourselves off petroleum energy generation.

            • bemenaker@lemmy.world
              link
              fedilink
              English
              arrow-up
              3
              ·
              11 months ago

              So far the problem, if I understand correctly, is all thorium reactors are molten salt reactors. The issue there is, we still haven’t solved the metallurgy problems of dealing with the corrosive salt. It destroys all the pipes. We have slowed it down, but not enough to go production with.

            • Gork@lemm.ee
              link
              fedilink
              English
              arrow-up
              2
              ·
              11 months ago

              By that time I’m hoping we’d be using Deuterium-Tritium fusion for all our needs. Or go full scale megaengineering and Dyson Sphere some star somewhere.

          • ephemeral_gibbon@aussie.zone
            link
            fedilink
            English
            arrow-up
            4
            ·
            11 months ago

            Why do you think we need nuclear to transition fully off petroleum? Renewables with storage are cheaper today for new build power, let alone in another 20 years. They continue to get cheaper and more efficient quite rapidly.

            • Croquette@sh.itjust.works
              link
              fedilink
              English
              arrow-up
              11
              arrow-down
              1
              ·
              11 months ago

              Because renewable depends on the weather, while nuclear doesn’t.

              A mix of renewable is absolutely a good thing to do, but still, having a constant source of energy mixed with that ensure stability.

            • Asifall@lemmy.world
              link
              fedilink
              English
              arrow-up
              6
              arrow-down
              1
              ·
              11 months ago

              The storage problem is the limiting factor. Batteries are wildly too expensive, pumped storage takes a huge amount of space and isn’t feasible in most places due to geography, and hydrogen is not nearly there yet technologically.

              If we switched entirely to wind and solar we would need to accept total shutdowns when we had a bad run of weather.

            • kameecoding@lemmy.world
              link
              fedilink
              English
              arrow-up
              5
              arrow-down
              2
              ·
              11 months ago

              last time I checked the renewables being installed didn’t even offset the new energy demands being created, let alone making a dent in starting to decarbonize existing demand.

              and the main reason is, that we need to tackle climate change from as many angles as possible and not eliminate a fine energy source just because something else is cheaper.

              I mean for now renewables are cheaper, do you think we have enough raw materials to cover all of earths energy needs?

              what happens when the raw materials will start to run dry but we still need to cover a bunch of energy needs, is that when we dust off the good ol Nuclear plants?

              not to mention Nuclear plants provide a stable base load, no need for smart electronic devices that use power when it’s most abundant etc. it’s just power, that runs, constantly.

            • Gork@lemm.ee
              link
              fedilink
              English
              arrow-up
              1
              ·
              11 months ago

              Adding to what others have said here, nuclear is great for base load consumption. Use the renewables to supplement during peak hours where load variability is the greatest.

              Sure, you could connect renewables to batteries / accumulators for times when they are not available (i.e. no wind, no sun) but this doesn’t give a very good consistent base load. A nuclear plant that is 1 MWe will always give 1MWe if it is up all the time. I’m not saying here that batteries aren’t a good option, just that they aren’t the optimal solution.

              Another thing to consider is resistive transmission losses. Connecting long cables from, say offshore wind farms or areas of high wind density, to electrical substations long distances away makes delivering the electricity more inefficient. Granted, having it is better than not (nobody likes brownouts). But engineers try to take all of these into consideration when working on the regional power grid.

            • JungleJim@sh.itjust.works
              link
              fedilink
              English
              arrow-up
              2
              arrow-down
              1
              ·
              11 months ago

              I think the issue is batteries, which are expensive and require rare earth metals which often have environmentally costly acquisition methods. Perhaps an optimal solution would be a baseline of nuclear power, and then enough renewables to meet peaks in demand. That way we have plenty of stable energy while minimizing nuclear risks.

              • joel_feila@lemmy.world
                link
                fedilink
                English
                arrow-up
                5
                ·
                11 months ago

                When you get into power say a whole large city the batteries cost more then the solar panels. Especially in more polar places like Juno Alaska where you need to store a surplus of power for months. plus batteries degrade over time so they would have to be replaced. That’s part of the reason why ion flow batteries are being researched, you can just drain them and replace the fluid*.

          • schroedingershat@lemmy.world
            link
            fedilink
            English
            arrow-up
            4
            arrow-down
            4
            ·
            11 months ago

            You’re conflating leftover dregs of Pu-239 (about a 10-15% boost in energy per fuel input) with non-fissile material like U238. Breeder reactors required to use the second have never been used commercially in breeding mode.

            You’ve either fallen for or are intentionally spreading a lie.

            • Gork@lemm.ee
              link
              fedilink
              English
              arrow-up
              3
              ·
              edit-2
              11 months ago

              What lie am I spreading? Conventional Light Water Reactor Nuclear Fuel (5-6% U-235 w/t%) can be recycled. This can be done even without using breeder reactors which operate through fast fission of U-235

              Yes the plutonium can be stripped out along with the other transuranics, and it does pose a proliferation risk (separate issue), but it definitely can be recycled. France reprocesses their fuel.

              Edit: typo correction

              • schroedingershat@lemmy.world
                link
                fedilink
                English
                arrow-up
                3
                arrow-down
                6
                ·
                edit-2
                11 months ago

                Ah. So intentional then. You’re trying to pretend extracting the <0.7% left over U235 and Pu239 (for a 10-15% increase in U235 fuel economy) is somehow fissioning U238.

                • Gork@lemm.ee
                  link
                  fedilink
                  English
                  arrow-up
                  4
                  ·
                  11 months ago

                  I don’t understand what you’re trying to say here. Reprocessed fuel does not imply that we’re now fissioning U-238. That takes place in a completely different energy regime (fast fission vs. thermal). Light Water Reactors and fast reactors operate differently, with different fuels. LWRs in commercial operation use slightly enriched U-235. There is no fissioning of U-238 other than the very small amount of spontaneous fission which is negligible compared to contributions from thermal fission in an LWR. The Six Factor formula governs criticality reactions, and these terms differ for both reactor types. The nuclear cross sections are fundamentally different between these energy regimes.

                  Reprocessed fuel is what it implies, recycled processed LWR fuel, stripped of the fission products that built up as the fuel underwent burnup in the core. If this were some sort of pretend activity then I guess the entire reprocessing back end of the nuclear fuel industry is fake.

                  I don’t appreciate the personal attacks, so if you have nothing constructive to say, good day to you sir slash madam.

                • mwguy@infosec.pub
                  link
                  fedilink
                  English
                  arrow-up
                  1
                  ·
                  11 months ago

                  U-238 is largely stable and has the consistency of metal, making it easy to store or sequester away. Most natural deposits of Uranium are U-238.

                  Additionally you can make a breeder reactor that bombards U-238 to make U-239 which has a half life of 23+ minutes and decays into Plutonium-239 which can be used in nuclear power generation.

        • MyNameIsIgglePiggle@sh.itjust.works
          link
          fedilink
          English
          arrow-up
          3
          ·
          11 months ago

          If we can pull off hydrogen fusion without crazy radioactive isotopes I reckon we can go on for a little while without having to worry about running out of hydrogen in the solar system / galaxy

          • schroedingershat@lemmy.world
            link
            fedilink
            English
            arrow-up
            1
            ·
            11 months ago

            Instead we only have to worry about immediately running out of beryllium for breeding blankets just on the demo reactors.

        • Ryumast3r@lemmy.world
          link
          fedilink
          English
          arrow-up
          8
          arrow-down
          2
          ·
          11 months ago

          I’m spooked by the fact that you have no idea how the US enriches uranium, or the difference between a power pressurized water reactor and a fast “breeder” reactor (if you were thinking of plutonium) or a centrifuge.

          The US enriches uranium using a gas-centrifuge. The US also no longer recycles spent nuclear fuel, but France does.

        • Album@lemmy.ca
          link
          fedilink
          English
          arrow-up
          3
          ·
          11 months ago

          Nuclear plants don’t enrich. Enrichment would happen without power plants. Bomb fuel and power fuel are not the same.

    • irotsoma@lemmy.world
      link
      fedilink
      English
      arrow-up
      6
      arrow-down
      5
      ·
      11 months ago

      Too bad the energy companies essentially never dispose of the waste properly, because it’s too expensive if they want to give the huge bonuses to their CEOs and buyback thie stock. Even when doing it “properly” it’s basically just making it the problem of future generations once the concrete cracks.

      And to reprocess the waste and make it actually safe energy would mean no profit at all plus the tech doesn’t exist yet to actually build the reactors to reprocess the waste. I mean we understand the theory, but it would take at least a decade to engineer and build a prototype.

      Compare that to investing in battery tech which would have far reaching benefits. And combining that with renewables is much more profitable.

      • fubo@lemmy.world
        link
        fedilink
        English
        arrow-up
        15
        ·
        11 months ago

        Too bad the energy companies essentially never dispose of the waste properly

        To be fair, nuclear waste tends to be disposed of much more properly than coal waste.

        • irotsoma@lemmy.world
          link
          fedilink
          English
          arrow-up
          1
          arrow-down
          9
          ·
          11 months ago

          True, but still not anywhere near “clean” as it’s always marketed as.

          • Strykker@programming.dev
            link
            fedilink
            English
            arrow-up
            14
            ·
            11 months ago

            This is a stupid take.

            Coal power puts out more radioactive waste than nuclear does, and coal sends it right into the air where we can’t manage it.

            Nuclear waste is kept solid, and contained. We know exactly where it goes and as long as the rules are followed it’s not at risk of polluting anything.

            Sure solar and wind don’t have any by product once they are setup, but they also don’t fit the baseline power need that nuclear does.

            • irotsoma@lemmy.world
              link
              fedilink
              English
              arrow-up
              2
              arrow-down
              1
              ·
              11 months ago

              Problem is it’s not profitable to follow the rules, and conservatives have blocked building a national “permanent” storage site for decades. The IS has no where to put it. It’s just sitting in storage facilities, above ground and in many states in places where an earthquake could cause it to leak into ground water and make the area unlivable for centuries, or cost trillions to clean up.

              https://www.scientificamerican.com/article/nuclear-waste-is-piling-up-does-the-u-s-have-a-plan/

              • Buelldozer@lemmy.world
                link
                fedilink
                English
                arrow-up
                2
                ·
                edit-2
                11 months ago

                Quite a large number of Republicans, including Trump himself, spend decades trying to ram Yucca mountain through. It faced heavy resistance from both the Clinton and Obama Administrations, the State of Nevada, and myriad of environmental organizations. Trying to blame it on “Conservatives” is pretty ridiculous.

                https://www.ktnv.com/news/history-of-yucca-mountain-1982-2018

                Yucca Mountain was killed by decades of persistent interference by opponents of nuclear power.

                • irotsoma@lemmy.world
                  link
                  fedilink
                  English
                  arrow-up
                  1
                  ·
                  edit-2
                  11 months ago

                  Yucca Mountain was a bad site. Once they started digging they found that the ground was too loose. It wouldn’t be able to support the weight without sinking. Have you ever seen the foundation of a house that sank on one side? The concrete buckles as the weight of the house slowly compacts the soil. The same thing will happen with millions of tons of waste, steel, and concrete. It’s why missile silos were built in bedrock, not loose soil. Not to mention the technology wasn’t going to allow digging deep enough to store all that much. It would mostly be used for waste from nuclear weapons, ship reactors, and other military projects. Not really that much space would have been available for commercial power generator use.

                  The conservatives who pushed for it did it because the contractors paid them to. It was blocked because the waste would leak not in thousands of years but in maybe decades. Not to mention the land was stolen from Native Americans and they didn’t want nuclear waste in their stollen land. Among many other issues.

                  Edit: besides the Clintons have always been conservatives, too. So they’re in that bucket. They’re just moderates.

          • mwguy@infosec.pub
            link
            fedilink
            English
            arrow-up
            2
            ·
            11 months ago

            What makes you say that. Nuclear waste has the consistency of glass or sand depending on how it’s processed. And if we reprocessed that waste like the French we could effectively remove the danger of it.

            • irotsoma@lemmy.world
              link
              fedilink
              English
              arrow-up
              2
              arrow-down
              1
              ·
              11 months ago

              See earlier in the thread. The waste is highly radioactive, of course, and very hot for some time. First it is dumped in pools. If the pool floods or cracks, you end up with the Fukushima issue. Fortunately that went to the ocean primarily and so was diluted. But in the US, much of the country is landlocked and it would instead enter ground water.

              Second, once the material is cooled enough to transport, it is supposed to be moved to a secure location, dropped deep into the ground, and encased in concrete. At this point if there are no earthquakes and water doesn’t enter and damage the concrete, this will stay put for a thousand years or so, but eventually it will get out long before it’s safe considering some of it takes around 250,000 years for it to decay enough to be safe.

              As for what France does, as I mentioned, the US has not developed or built that tech because there is ultimately no profit in it and the US is unwilling to spend tax money on it. So it would fall to increased energy cost for the consumer in places where nuclear is used, and no one is going to like that. The cost of building the reprocessing facilities and doing the actual processing outweighs the value of the produced product. And building the first one is going to be the most expensive, and no modern energy company is likely to want to take the hit to short term stock prices in order to take it on. And conservatives won’t approve tax increases at all in the current political climate. And progressive places have already started moving to renewables instead since it’s cheaper.

              • Buelldozer@lemmy.world
                link
                fedilink
                English
                arrow-up
                3
                ·
                11 months ago

                As for what France does, as I mentioned, the US has not developed or built that tech because there is ultimately no profit in it and the US is unwilling to spend tax money on it.

                First Ford, then Carter stopped commercial re-processing in the United States. Reagan brought it back. G. H. W. Bush then put the brakes on it but stopped short of an outright ban. Clinton stepped on the brakes even harder but again stopped shy of a full ban and when Bush Jr came into office he started a slow process of bringing it back. That’s as far as this CRS Report goes although there may be an updated one somewhere out there.

                Still, the US has spent money on it and was doing so at least as recently as 2008. It appears the biggest worry we have is proliferation of nuclear material, not profit or cost.

                • irotsoma@lemmy.world
                  link
                  fedilink
                  English
                  arrow-up
                  1
                  ·
                  11 months ago

                  The problem is that by the 80s and 90s we were trying to wind down production of nuclear weapons as the cold war was winding down. Some of these reprocessing methods, like in France, reprocess the plutonium, and modern reactors just don’t produce plutonium anymore. Also, some of the methods create uranium that is enriched to as much as 20%. With terrorism a big concern, that would be a pretty tempting target.

                  That being said, we are developing the tech, just very, very slowly. And now that renewables are cheap, it’s just not necessary to have so many fueled generators. So the long term profit just isn’t there for companies to want to invest. The area where I live is primarily hydro power, which is one of the more predictable renewables. But offshore wind farms give a pretty steady flow as well. And in deserts concentrated solar power can generate enough energy during the peak times when A/C is being used. And if there were better battery tech, more could be stored for use at night than currently is, and wind is still pretty reliable due to the changes in temperature from day to night.

                  Of course we still need fueled generators, but we shouldn’t be expanding them, we should be concentrating on using them only as a backup to renewables.

            • irotsoma@lemmy.world
              link
              fedilink
              English
              arrow-up
              1
              ·
              11 months ago

              How is solar, wind, or hydro not “clean”? The generating of the power, not the building of the facilities, building anything is never clean.

              • dustojnikhummer@lemmy.world
                link
                fedilink
                English
                arrow-up
                1
                ·
                11 months ago

                People count material, fuel and ecological with nuclear as well, so why not count it with hydro, wind and solar? Concrete is concrete.

                • irotsoma@lemmy.world
                  link
                  fedilink
                  English
                  arrow-up
                  1
                  arrow-down
                  1
                  ·
                  11 months ago

                  Because all technology will require that. If we want energy, we have to build stuff. But there’s no fuel to buy, generally much less ecological impact due to limited waste products since no fuel is being “burned”. And the building cost is one time and generally subsidized, and maintenance is considerably lower, not to mention labor since you don’t need nuclear specialists to run the day to day.

  • jon@lemmy.tf
    link
    fedilink
    English
    arrow-up
    31
    arrow-down
    2
    ·
    edit-2
    11 months ago

    Yeah, after literally bankrupting Westinghouse and costing us Georgians billions of dollars. I’m all for more nuclear power but this project was a colossal shitshow.

    Georgia also has some shiny new solar factories so I’m interested to see how deep into renewables we can get in the next decade.

  • paddirn@lemmy.world
    link
    fedilink
    English
    arrow-up
    28
    arrow-down
    2
    ·
    11 months ago

    “If you wish to make a nuclear reactor from scratch, you must first invent the universe”

    • Buttons@programming.dev
      link
      fedilink
      English
      arrow-up
      12
      ·
      edit-2
      11 months ago

      Inventing the universe is only a small part of it, you have to get regulatory permission first!

      (Joking aside, I support regulated nuclear power plants.)

  • GreenCrush@lemmy.world
    link
    fedilink
    English
    arrow-up
    21
    arrow-down
    2
    ·
    11 months ago

    Very good news. Nuclear power simply has way more benefits over fossil fuels. Not to mention it’s statistically safer, despite what decades of anti-nuclear sentiment has taught the public.

  • HarrBear@lemmy.world
    link
    fedilink
    English
    arrow-up
    20
    arrow-down
    2
    ·
    11 months ago

    I’m all for investing in other forms of energy beyond fossil fuels, this is good news to me.

  • majormoron@lemmy.world
    link
    fedilink
    English
    arrow-up
    17
    arrow-down
    3
    ·
    11 months ago

    Hey wow, it’s great to see we are still persuing this avenue for energy, I hate how stigmatized nuclear became (with some good reasons). Like any technology, we just rushed to using it without understanding the full consequences when shit goes wrong. Hopefully we’re better prepared now.

  • Yendor@sh.itjust.works
    link
    fedilink
    English
    arrow-up
    15
    arrow-down
    2
    ·
    11 months ago

    Ah, i remember studying the Westinghouse AP1000 reactor design when I was at Uni. It had just been approved, and numerous plants were expected, with the first expected to be online from around 2010.

    It’s 2023, and this is the first one to go live in the US.